(x-y/2)^2-(x+y/2)^2,其中X,Y互为相反数(先分解因式,再计算求值)

问题描述:

(x-y/2)^2-(x+y/2)^2,其中X,Y互为相反数(先分解因式,再计算求值)

x、y应该是互为倒数吧
(x-y/2)^2-(x+y/2)^2
=[(x-y/2)-(x+y/2)][(x-y/2)+(x+y/2)]
=(x-y/2-x-y/2)(x-y/2+x+y/2)
=(-y)*2x
=-2xy
=-2*1
=-2xy为什么等于1?这是倒数的定义。谢谢了~~