【高一数学】三角函数的基础计算题》》》

问题描述:

【高一数学】三角函数的基础计算题》》》
已知tanx=-1/2,那么sin^2*(x)+2*sinx*cosx-3cos^2*(x)等于多少?

原式=sin^2(x)+cos^2(x)+2sinxcosx-4cos^2(x) 根据二倍角公式与万能公式得到:2sin(x)cos(x)=sin(2x)=2*tan(x)/[1+tan^2(x)] 4cos^2(x)=2*[cos^2(x)-1]+2=2*[1-tan^2(x)]/[1+tan^2(x)]+2 所以原式就等于 3+2*ta...