数列,函数,圆锥曲线!

问题描述:

数列,函数,圆锥曲线!
在平面直角坐标系中,存在点An(Sn,Hn),Sn=a1+a2+…+an,Hn=qH(n-1) + bn(n>1,H1=b1),an=aq^(n-1) + 4,bn=(2n+1)b.(a>0,b>0,0

设P(p,q),则1/2*MN*|q|=PM*PN* MN/(4R) ,即|q|=x(4-x)/(2R),平方得4R^2=(4x-x^2)^2 /(q^2) 椭圆离心率为1/2,右准线为x=4,PN=x,则 x /(4-p)=1/2 ,p=4-2x,q^2=3[1-(p^2)/4]=-3(x^2 -4x+3),则(q^2)/3 +3=4x-x^2 ,代入得...