1、已知直线x2=2py交于A、B两点,且OA垂直于OB,OD垂直于AB交于D点,D(1,2),求p的值

问题描述:

1、已知直线x2=2py交于A、B两点,且OA垂直于OB,OD垂直于AB交于D点,D(1,2),求p的值
2、抛物线y2=4x上有两个定点A、B分别在对称轴的上下两侧,F为抛物线焦点,且FA=2,FB=5,求抛物线上一点P,使三角形PAB面积最大,并求最大面积.

抛物线焦点F(1,0),准线x=-1,抛物线上的点到焦点与准线的距离相等,所以A和B到准线x=-1的距离分别为2和5,所以A(1,y1)和B(4,y2),带入抛物线方程,又A和B分别在对称轴x轴的上方和下方,所以可求A和B的坐标分别是A(1,2)和B(4,-4);
AB的方程为:2x+y-4=0;
三角形PAB的底边AB长度固定,为 根号下45.
为使三角形PAB的面积最大,只需在抛物线上找一点P(x,y),使其到直线AB的距离最大即可,即
|2x+y-4| / 根号5 最大,且x=y^2/4,开口向上,所以最大值为无穷大,即三角形PAB的面积可以任意大,题目应该有误.