已知2^a*5^b=2^c*5^d=10,求证:(a-1)(d-1)=(b-1)(c-1)

问题描述:

已知2^a*5^b=2^c*5^d=10,求证:(a-1)(d-1)=(b-1)(c-1)

证明:∵2^a•5^b=10=2×5,∴2^(a-1)•5^(b-1)=1,∴[2^(a-1)•5^(b-1)]^(d-1)=1^(d-1),①同理可证:[2^(c-1)•5^(d-1)]^(b-1)=1^(b-1),②由①②两式得[2^(a-1)•5^(b-1)]^(d-1)=[2^(c-1)...