已知数列{an}为等差数列,Sn为其前n项和,a1+a5=6,S9=63. (1)求数列{an}的通项公式an及前n项和Sn; (2)数列{bn}满足:对∀n∈N*,bn=2an,求数列{an•bn}的前n项和Tn.
问题描述:
已知数列{an}为等差数列,Sn为其前n项和,a1+a5=6,S9=63.
(1)求数列{an}的通项公式an及前n项和Sn;
(2)数列{bn}满足:对∀n∈N*,bn=2an,求数列{an•bn}的前n项和Tn.
答
(1)∵S9=63,∴9a5=63,解得a5=7.
∵a1+a5=6,∴a1=-1,
∴d=
=2,
a5−a1
4
∴an=2n-3,Sn=n2−2n.
(2)∵an=2n-3,bn=2an,
∴bn=22n−3,
∴an•bn=(2n-3)•22n-3,
Tn=−1•2−1+1•21+3•23+5•25+…+(2n-3)•22n-3,
4Tn=-1×21+1•23+3•25+…+(2n-5)•22n-3+(2n-3)•22n-1,
两式相减,得:-3Tn=-
+2(2+23+25+…+22n−3)−(2n−3)•22n−11 2
=-
+2•1 2
−(2n−3)•22n−12(1−22(n−1)) 1−22
=
,(11−6n)•22n−11 6
Tn=
.(6n−11)•22n+11 18