求积分∫cos(Inx)dx

问题描述:

求积分∫cos(Inx)dx

分部积分
∫ cos(lnx)dx
=xcos(lnx)+∫ x*sin(lnx)*1/xdx
=xcos(lnx)+∫ sin(lnx)dx
再一次分部积分
=xcos(lnx)+xsin(lnx)-∫ x*cos(lnx)*1/xdx
=xcos(lnx)+xsin(lnx)-∫ cos(lnx)dx
然后将-∫ cos(lnx)dx 移动等式左边与左边合并后,除去系数(不要忘记右边要留下常数C)
得:∫ cos(lnx)dx=(1/2)xcos(lnx)+(1/2)xsin(lnx)+C