已知函数f(x)=e∧xInx (1)求函数f(x)的单调区间;(2)设x>0,求证:f(x+1)>e∧2x-1; (3)设n为正整数,求证:In(1×2+1)+In(2×3+1)+...+In[n(n+1)+1]>2n-3

问题描述:

已知函数f(x)=e∧xInx (1)求函数f(x)的单调区间;(2)设x>0,求证:f(x+1)>e∧2x-1; (3)设n为正整数,求证:In(1×2+1)+In(2×3+1)+...+In[n(n+1)+1]>2n-3

(1)f(x)‘=e∧xInx (Inx+1)
令f(x)‘>0得X>0得X>0为单调增期间,反之X我说。。。第二第三问你会吗。。。第一问我也会。。。(2) 因为f(x)=e∧xInx,则 f(x+1)=e∧(x+1)In(x+1),要证f(x+1)>e∧2x-1只证 f(x+1)-e∧2x-1>0, 设g(x)=e∧2x-1, 因为f(x)和g(x)在X>0上是增函数,则在X>0的期间上当X=0时为最小值,所以当x=0时f(x+1)-g(x)=1-(1-1)=1>0从而当X>0时有f(x+1)>e∧2x-1证完。