平面上两点A(-2,0),B(2,0),在圆C(x-3)^2 +(y-4)^2=4上求一点P使PA^2+PB^2的值最大,求P的坐标

问题描述:

平面上两点A(-2,0),B(2,0),在圆C(x-3)^2 +(y-4)^2=4上求一点P使PA^2+PB^2的值最大,求P的坐标

令P(x,y)
PA^2+PB^2 = (x+2)^2+y^2 + (x-2)^2 + y^2 = 2x^2+2y^2+8 = 2(x^2+y^2)+8
当x^2+y^2有最大值时,PA^2+PB^2 = 2(x^2+y^2)+8有最大值
即P点为圆(x-3)^2 +(y-4)^2=4上距离坐标运点的最远点
圆心坐标M(3,4)
连接OM,其延长线与原的交点即是所求:
kOM=4/3
OM=√(3^2+4)^2 = 5,MP=r=2
OP = OM+MP = 7
xP/xM = yP/yM = OP/OM = 7/5
xP = 7/5*xM = 21/5
yP = 7/5*YM = 28/5
P(21/5,28/5)