设a>b>0,求2a²+1/ab+1/a(a-b)最小值

问题描述:

设a>b>0,求2a²+1/ab+1/a(a-b)最小值

因a>b>0.故a²>ab>0.===>a²-ab>0,且ab>0.由基本不等式可知;a²+(1/ab)+[1/(a²-ab)]={(a²-ab)+[1/(a²-ab)]}+[(ab)+1/(ab)]≥2+2=4.等号仅当a²-ab=1,ab=1时取得;即当a=√2,b=1...