设数列{an}的前n项和为Sn,已知a1=1,a(n+1)=Sn((n+2)/n)(n=1,2,3,…).证明:
问题描述:
设数列{an}的前n项和为Sn,已知a1=1,a(n+1)=Sn((n+2)/n)(n=1,2,3,…).证明:
(1)数列{Sn/n}是等比数列;
(2)S(n+1)=4an.
答
a(n+1)=Sn((n+2)/n)
s(n+1)-sn=Sn((n+2)/n)
s(n+1)=sn*2(n+1)/n
s(n+1)/(n+1)=2*sn/n
s1=a1=1,s1/1=1,
所以数列{Sn/n}是首项为1公比为2的等比数列.
2.s(n+1)/(n+1)=2^(n+1)-1,s(n+1)=(2^(n+1)-1)(n+1)
4an=4*s(n-1)*(n+1)/(n-1)=4(2^(n-1)-1)(n+1)