已知x,y∈正实数,且x+y=2,求y/(x+2)+x/(y+2)的最值
问题描述:
已知x,y∈正实数,且x+y=2,求y/(x+2)+x/(y+2)的最值
答
y/(x+2)+x/(y+2)
=(x·(x+2)+y·(y+2))/((x+2)·(y+2))
=(x²+y²+2(x+y))/(xy+2(x+y)+4)
=((x+y)²-2xy+2(x+y))/(xy+2(x+y)+4)
=(8-2xy)/(8+xy)
=(-16-2xy+24)/(8+xy)
=-2+24/(8+xy)
∵x,y>0,x+y=2
∴0<xy≤1
∴2/3≤y/(x+2)+x/(y+2)<1
所求有最小值2/3