如图,直线l1:y=kx+b平行于直线y=x-1,且与直线l2:y=mx+1/2相交于点P(-1,0). (1)求直线l1、l2的解析式; (2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达
如图,直线l1:y=kx+b平行于直线y=x-1,且与直线l2:y=mx+
相交于点P(-1,0).1 2
(1)求直线l1、l2的解析式;
(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…
照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,Bn,An,…
①求点B1,B2,A1,A2的坐标;
②请你通过归纳得出点An、Bn的坐标;并求当动点C到达An处时,运动的总路径的长?
(1)∵y=kx+b平行于直线y=x-1,
∴y=x+b
∵过P(-1,0),
∴-1+b=0,
∴b=1
∴直线l1的解析式为y=x+1;(1分)
∵点P(-1,0)在直线l2上,
∴−m+
=0;1 2
∴m=
;1 2
∴直线l2的解析式为y=
x+1 2
;(2分)1 2
(2)①A点坐标为(0,1),
则B1点的纵坐标为1,设B1(x1,1),
∴
x1+1 2
=1;1 2
∴x1=1;
∴B1点的坐标为(1,1);(3分)
则A1点的横坐标为1,设A1(1,y1)
∴y1=1+1=2;
∴A1点的坐标为(1,2),即(21-1,21);(4分)
同理,可得B2(3,2),A2(3,4),即(22-1,22);(6分)
②经过归纳得An(2n-1,2n),Bn(2n-1,2n-1);(7分)
当动点C到达An处时,运动的总路径的长为An点的横纵坐标之和再减去1,
即2n-1+2n-1=2n+1-2.(8分)