如图,AB=CD,CE⊥AD于E,BF⊥AD于F,AE=DF,求证:AB∥CD.

问题描述:

如图,AB=CD,CE⊥AD于E,BF⊥AD于F,AE=DF,求证:AB∥CD.

证明:∵AE=DF,
∴AE+EF=DF+EF,
即AF=DE,
∵CE⊥AD,BF⊥AD,
∴∠AFB=∠DEC=90°,
在Rt△ABF和Rt△DCE中,

AB=CD
AF=DE

∴Rt△ABF≌Rt△DCE(HL),
∴∠A=∠D,
∴AB∥CD.