y=cosx+sinx+2,求最值
问题描述:
y=cosx+sinx+2,求最值
答
合一公式 acosx+bsinx 提取√(a²+b²)此题提取√(1²+1²)=√2y=cosx+sinx+2=√2 (√2 /2cosx+ √2 /2sinx ) +2=√2(sinπ/4*cosx + cosπ/4*sinx) +2=√2sin(π/4+x) +2故最大值是 √2+2最小值是 ...√2(sinπ/4*cosx + cosπ/4*sinx) +2怎么变成√2sin(π/4+x) +2把式子合起来sinAcosB+cosAsinB=sin(A+B)这个公式也忘了??