设函数f(x)=(x-3)3+x-1,{an}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a7)=14,则a1+a2+…+a7=(  ) A.0 B.7 C.14 D.21

问题描述:

设函数f(x)=(x-3)3+x-1,{an}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a7)=14,则a1+a2+…+a7=(  )
A. 0
B. 7
C. 14
D. 21

∵f(x)=(x-3)3+x-1,∴f(x)-2=(x-3)3+x-3,
令g(x)=f(x)-2
∴g(x)关于(3,0)对称
∵f(a1)+f(a2)+…+f(a7)=14
∴f(a1)-2+f(a2)-2+…+f(a7)-2=0
∴g(a1)+g(a2)+…+g(a7)=0
∴g(a4)为g(x)与x轴的交点
因为g(x)关于(3,0)对称,所以a4=3
∴a1+a2+…+a7=7a4=21,
故选D.