麦克劳林公式怎么证明
问题描述:
麦克劳林公式怎么证明
答
由f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^(n) (泰勒公式)中,令x0=0得f(x)=f(0)+f'(0)*x+f''(x)/2!*x^2+...+f(n)(0)/n!*x^(n )(麦克劳林公式,x^(n )表示x的n阶导数)...泰勒公式怎么得来的啊?我给你选为最佳函数f(x)在点x0某邻域内具有直到n+1阶导数,我们希望找到一个n次多项式Pn(x)=a0+a1(x-x0)+a2(x-x0)^2+…+an(x-x0)^n,使这个多项式与f(x)在x0处具有相同的函数值及相同的直到n阶的导数值,容易确定这个多项式就是 Pn(x)=f(x0)+f'(x0)(x-x0)+[f''(x0)/2!](x-x0)^2+…+ +[f