已知双曲线x^2/a^2-y^2/b^2=1(a>b>0)的两条渐近线的夹角为pai/3则双曲线的离心率为

问题描述:

已知双曲线x^2/a^2-y^2/b^2=1(a>b>0)的两条渐近线的夹角为pai/3则双曲线的离心率为

渐近线y=(b/a)x和y=-(b/a)x.夹角为60度,则一条渐近线与x轴的夹角为30度.所以tan30(度)=b/a=1/根号3,c^2=a^2+b^2.离心率e=c/a=2/根号3