已知三角形ABC中,角A,B,C的所对边分别为a,b,c,且tanA=3/4,求sin^2((B+C)/2)+cos2A的值

问题描述:

已知三角形ABC中,角A,B,C的所对边分别为a,b,c,且tanA=3/4,求sin^2((B+C)/2)+cos2A的值
主要是已经化简完之后,应该怎么弄
为什么 :tanA = 3/4,所以sinA = 3/5,cosA=4/5

tanA=3/4>0,故A是锐角
得:sinA=3/5,cosA=4/5
A=180-(B+C)
cos(A/2)=cos[90-(B+C)/2]=sin[(B+C)/2]
所以sin²[(B+C)/2]=cos²[A/2]=(1+cosA)/2=(1+4/5)/2=9/10
sin²A+cos²A=1
cos2A=2cos²A-1=2*16/25-1=7/25
所以原式=9/10+7/25=59/50