求圆心在直线3x+4y-1=0上,且过两圆x2+y2-x+y-2=0与x2+y2=5交点的圆的方程.

问题描述:

求圆心在直线3x+4y-1=0上,且过两圆x2+y2-x+y-2=0与x2+y2=5交点的圆的方程.

根据题意设所求圆的方程为(x2+y2-x+y-2)+m(x2+y2-5)=0,
整理得:(1+m)x2+(1+m)y2-x+y-2-5m=0,
即x2+y2-

1
1+m
x+
1
1+m
y-
2+5m
1+m
=0,
∴圆心坐标为(
1
2(1+m)
,-
1
2(1+m)
),
又圆心在直线3x+4y-1=0上,
∴3•
1
2(1+m)
-4•
1
2(1+m)
-1=0,
解得:m=-
3
2

则所求圆的方程为x2+y2+2x-2y-11=0.