设数列{an}的前n项和Sn=(-1)n(2n2+4n+1)-1,n∈N*. (1)求数列{an}的通项公式an; (2)记bn=(−1)nan,求数列{bn}前n项和Tn.
问题描述:
设数列{an}的前n项和Sn=(-1)n(2n2+4n+1)-1,n∈N*.
(1)求数列{an}的通项公式an;
(2)记bn=
,求数列{bn}前n项和Tn. (−1)n an
答
(1)数列{an}的前n项之和Sn=(-1)n(2n2+4n+1)-1,在n=1时,a1=s1=(-1)1(2+4+1)-1=-8
在n≥2时,an=sn-sn-1=(-1)n(2n2+4n+1)-(-1)n-1[2(n-1)2+4(n-1)+1]=(-1)n•4n(n+1),
而n=1时,a1=-8满足an=(-1)n4n(n+1),故所求数列{an}通项an=(-1)n4n(n+1).
(2)∵bn=
=(−1)n an
=1 4n(n+1)
(1 4
-1 n
),1 n+1
因此数列{bn}的前n项和Tn=
(1-1 4
)=1 n+1
4n n+1