若直线x+y-1=0与圆x^2+y^2-tx+2ty+t+1=0相切,则实数t等于?

问题描述:

若直线x+y-1=0与圆x^2+y^2-tx+2ty+t+1=0相切,则实数t等于?

根据x+y-1=0,y=1-x,代入x^2+y^2-tx+2ty+t+1=0得:x^2+(1-x)^2-tx+2t(1-x)+t+1=0x^2+1-2x+x^2-tx+2t-2tx+t+1=02x^2 - (3t+2)x + 3t+2 = 0相切,相当于有一个交点判别式=0(3t+2)^2 - 4*2(3t+2)=0(3t+2)(3t+2-8)=03(3t...