若椭圆x236+y29=1的弦中点(4,2),则此弦所在直线的斜率是( ) A.2 B.-2 C.13 D.−12
问题描述:
若椭圆
+x2 36
=1的弦中点(4,2),则此弦所在直线的斜率是( )y2 9
A. 2
B. -2
C.
1 3
D. −
1 2
答
设此弦所在直线与椭圆相交于点A(x1,y1),B(x2,y2).则x2136+y219=1,x2236+y229=1,两式相减得(x1+x2)(x1−x2)36+(y1+y2)(y1−y2)9=0.∵4=x1+x22,2=y1+y22,kAB=y1−y2y1+y2.代入上式可得836+4kAB9=0...