数列an的前n项和为Sn,a1=1,2Sn=a(n+1)-n^2/3-n-2/3
问题描述:
数列an的前n项和为Sn,a1=1,2Sn=a(n+1)-n^2/3-n-2/3
(1)求通项
(2)求证1/a1+1/a2+3/a3+…+1/an
不好意思打错了,应该是2Sn/n=a(n+1)-n^2/3-n-2/3
答
2Sn=na(n+1)-n^3/3-n^2-2n/3
2an=Sn-S(n-1)
an=n*a(n+1)/n+1-n
an/n=a(n+1)/n+1-1
1=a(n+1)/n+1-an/n
{an/n}成,首项为1,公差为1的等差数列
an/n=1+(n-1)=n
an=n^2