若n为正整数,观察下列各式:1/1x3=1/2(1-1/3),1/3x5=1/2(1/3-1/5),1/5x7=1/2(1/5-1/7),……计算:
问题描述:
若n为正整数,观察下列各式:1/1x3=1/2(1-1/3),1/3x5=1/2(1/3-1/5),1/5x7=1/2(1/5-1/7),……计算:
若n为正整数,观察下列各式:1/1x3=1/2(1-1/3),1/3x5=1/2(1/3-1/5),1/5x7=1/2(1/5-1/7),……根据观察计算:1/1x3+1/3x5+1/5x7+……+1/(2n-1)(2n+1).
答
1/1x3+1/3x5+1/5x7+……+1/(2n-1)(2n+1)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+……+1/2[(2n-1)-1/(2n+1)]
=1/2[1-1/3+1/3-1/5+1/5-1/7……+1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=n/(2n+1)