求不定积分∫√(a^2+x^2)dx

问题描述:

求不定积分∫√(a^2+x^2)dx

令x=atanz
dx=asec²z dz
原式=∫asecz*asec²z dz
=∫secz dtanz,a²先省略
=secztanz - ∫tanz dsecz
=secztanz - ∫tanz(secztanz) dz
=secztanz - ∫sec³z dz + ∫secz dz
∵2∫sec³z dz = secztanz + ln|secz + tanz|
∴∫sec³z dz = (1/2)secztanz + (1/2)ln|secz + tanz| + C
原式=(1/2)a²secztanz + (1/2)a²ln|secz + tanz| + C1
=(1/2)x√(a²+x²) + (1/2)a²ln|x + √(a²+x²)| + C2