s=1x2+2x3+3x4+.nx(n+1)的和为多少

问题描述:

s=1x2+2x3+3x4+.nx(n+1)的和为多少

s=1x2+2x3+3x4+.nx(n+1)
=1x(1+1)+2x(2+1)+3x(3+1)+...+nx(n+1)(去括号)
=1²+1+2²+2+3²+3+...+n²+n
=(1²+2²+3²+...+n²)+(1+2+3+...+n)
下面的步骤可以套公式了;
=n(n+1)(2n+1)/6 +(1+n)*n/2
=n(n+1)(n+2)/3