已知正项数列{an}的前n项和为Sn,a1=1/2,且满足2Sn+1=4Sn+1(n∈N*),则数列{an}的通项公式为_.

问题描述:

已知正项数列{an}的前n项和为Sn,a1=

1
2
,且满足2Sn+1=4Sn+1(n∈N*),则数列{an}的通项公式为______.

∵a1=

1
2
,且满足2Sn+1=4Sn+1(n∈N*),
∴2Sn+1+1=4Sn+2,
2Sn+1+1
2Sn+1
=2,为定值.
2S1+1=2a1+1=2,
∴数列{2Sn+1}是以2为首项,2为公比的等比数列,
2Sn+1=2n
Sn=
2n−1
2

n≥2时,an=Sn-Sn-1=
2n−1
2
-
2n−1−1
2
=2n-2
n=1时,a1=21-2=
1
2
满足上式,
∴数列{an}的通项公式an=2n-2
故答案为:an=2n-2