已知正项数列{an}的前n项和为Sn,a1=1/2,且满足2Sn+1=4Sn+1(n∈N*),则数列{an}的通项公式为_.
问题描述:
已知正项数列{an}的前n项和为Sn,a1=
,且满足2Sn+1=4Sn+1(n∈N*),则数列{an}的通项公式为______. 1 2
答
∵a1=
,且满足2Sn+1=4Sn+1(n∈N*),1 2
∴2Sn+1+1=4Sn+2,
=2,为定值.2Sn+1+1 2Sn+1
2S1+1=2a1+1=2,
∴数列{2Sn+1}是以2为首项,2为公比的等比数列,
2Sn+1=2n,
Sn=
,
2n−1 2
n≥2时,an=Sn-Sn-1=
-
2n−1 2
=2n-2,
2n−1−1 2
n=1时,a1=21-2=
满足上式,1 2
∴数列{an}的通项公式an=2n-2.
故答案为:an=2n-2.