在三角形ABC中,若b/c=3/5,则(sinB+2sinC)/sinC=如题

问题描述:

在三角形ABC中,若b/c=3/5,则(sinB+2sinC)/sinC=
如题

在△ABC中,根据正弦定理:
a/sinA =b/sinB =c/sinC→sinB/sinC=b/c=5/3,
故:
(sinB+2sinC)/sinC=sinB/sinC+2=11/3。
PS:三角形ABC中,正弦定理如上,余弦定理为:
cosA=(b²+c²-a²)/2bc,cosB=(a²+c²-b²)/2ac,cosC=(a²+b²-c²)/2ab。

  • sinB/sinC=b/c,原式等于b/c+2=2.6

根据正弦定理得:b/sinB=c/sinC
即:sinB/sinC=b/c=3/5
(sinB+2sinC)/sinC
=sinB/sinc+2sinC/sinC
=3/5+2
=13/5