已知函数f(x)=ax–ln(–x),x属于[–e,0),其中e是自然对数的底数,a属于R,当a=–1时,证明f(x)+ln(–x)除以x大于2分之一?
问题描述:
已知函数f(x)=ax–ln(–x),x属于[–e,0),其中e是自然对数的底数,a属于R,当a=–1时,证明f(x)+ln(–x)除以x大于2分之一?
答
根据你的提问回答如下——当a=-1时,设g(x)=f(x)+ln(-x)/x,则g(x)=-x-ln(-x)+ln(-x)/x.令u=-x,h(u)=u-ln(u)-ln(u)/u,则u∈(0,e],g(x)=h(u),只需证h(u)>1/2.h'(u)=1-1/u+(ln(u)-1)/u^2,那么有:(a)、当u∈(0,1],ln(u...