过点P(1,0)的直线与抛物线y^2=4x交于相异AB,O为抛物线顶点,则 OA • OB =
问题描述:
过点P(1,0)的直线与抛物线y^2=4x交于相异AB,O为抛物线顶点,则 OA • OB =
答
设直线为y=k(x-1),A(x1,y1),B(x2,y2)
由y²=4x和y=k(x-1)可得k²x²-(2k²+4)x+k²=0,由韦达定理可知x1+x2=2+4/k²,x1*x2=1
则y1*y2=k²(x1-1)(x2-1)=k²x1x2-k²(x1+x2)+k²=-4
则OA·OB=x1x2+y1y2=-3