(步骤)已知3sinα-2cosα=0,求3cos2α-2sinα×cosα+1的值

问题描述:

(步骤)已知3sinα-2cosα=0,求3cos2α-2sinα×cosα+1的值

∵3sinα-2cosα=0,∴3sinα=2cosα,∴tanα=2/3.
∴3(cosα)^2-2sinαcosα+1
=[3(cosα)^2-2sinαcosα+(cosα)^2+(sinα)^2]/[(sinα)^2+(cosα)^2]
=[3-2tanα+1+(tanα)^2]/[(tanα)^2+1]
=[3-2×(2/3)+(2/3)^2]/[(2/3)^2+1]
=(27-12+4)/(4+9)
=19/13.