已知锐角三角形ABC的三个内角A,B,C对边分别是a,b,c,且a+b/cosA+cosB=c/cosC (1)求证:角A,B,C成等差数列(2)若角A是三角形的最大内角,求cos(B+C)+3^1/2sinA的取值范围

问题描述:

已知锐角三角形ABC的三个内角A,B,C对边分别是a,b,c,且a+b/cosA+cosB=c/cosC (1)求证:角A,B,C成等差数列
(2)若角A是三角形的最大内角,求cos(B+C)+3^1/2sinA的取值范围

证明:(1)由CosC=(a^2+b^2-c^2)/2ab CosB=(a^2+c^2-b^2)/2ac CosA=(c^2+b^2-a^2)/2bc 将a+b/cosA+cosB=c/cosC 中的cos项都用余弦定理中a,b,c替换,化简得 c^2=a^2+b^2-ab,再结合c^2=a^2+b^2-2*a*b*CosC 可知2cosC=1...