由曲线y=2x^2,y=x^2与直线y=1所围成图形面积
问题描述:
由曲线y=2x^2,y=x^2与直线y=1所围成图形面积
答
int (y=0->1) [sqrt(y) - sqrt(y/2) ]dy = 2/3 y^(3/2) - sqrt(2)/3 y^(3/2) = (2-sqrt(2))/3
由曲线y=2x^2,y=x^2与直线y=1所围成图形面积
int (y=0->1) [sqrt(y) - sqrt(y/2) ]dy = 2/3 y^(3/2) - sqrt(2)/3 y^(3/2) = (2-sqrt(2))/3