若cos2β+cosβ=0,求sin2β+sinβ的值 求详解
问题描述:
若cos2β+cosβ=0,求sin2β+sinβ的值 求详解
答
cos2β+cosβ=2cos²β-1+cosβ=0
令cosβ=t
原式= 2t²-1+t=0
(2t-1)(t+1)=0
t=-1或t=1/2
cosβ=-1或1/2
①当cosβ=-1时,β=π
sinβ=1 sin2β=0
②当cosβ=1/2时,β=π/3
sinβ=根号三/ 2 sin2β=根号三/2
答
令tanα=-4,tanβ=1 则有cos2β=0,sin2β=1 cos2α+cos2β/sin2α+sin2β =cos2α /(sin2α +1 ) =(cos^2α- sin^2α)/(2sinα