给定抛物线C:y^2=4x,F是C的焦点,过点F的直线L与C相交于A,B两点,记O为坐标原点.求1、OA向量*OB向量的值2、设AF向量=x个FB向量,当三角形OAB的面积S属于【2,根号5】时,求x的取值范围 详解.
问题描述:
给定抛物线C:y^2=4x,F是C的焦点,过点F的直线L与C相交于A,B两点,记O为坐标原点.求1、OA向量*OB向量的值2、设AF向量=x个FB向量,当三角形OAB的面积S属于【2,根号5】时,求x的取值范围 详解.
答
第二问:
设A(x1,y1) B(x2,y2) 设y1>0,y2AF=xFB (1-x1,y1)=x(x2-1,y2)
可得方程组
1-x1=x(x2-1) ①
-y1=xy2 ②
且 y1^2=4x1 ③
y2^2=4X2 ④
联立 ②③④ 式,消去y1,y2 得 x1=x^2 X2
代入①式 x2=1/x 注意x>0
所以y2=-2/√x, y1=2√x
三角形面积 2≤(y1-y2)/2 ≤√5
代入,求得(3-√5)/2≤x≤(3+√5)/2
答
(假定A在x轴上方,B在x轴下方)1,抛物线方程为y^2=4x,F为其焦点,则F(1,0) 当直线L斜率不存在时,L:x=1,可知A(1,2)、B(1,-2)∴向量OA=(1,2) 向量OB(1,-2)∴向量OA点乘向量OB=1*1+2*(-2)=-3当直线L斜率存在时,设L的方...