已知函数f(x)=3x,且f(a)=2,g(x)=3ax-4x. (1)求g(x)的解析式; (2)当x∈[-2,1]时,求g(x)的值域.

问题描述:

已知函数f(x)=3x,且f(a)=2,g(x)=3ax-4x
(1)求g(x)的解析式;
(2)当x∈[-2,1]时,求g(x)的值域.

(1)由f(a)=2得3a=2,a=log32,
∴g(x)=(3ax-4x=(3log32)x4x=2x-4x=-(2x2+2x
∴g(x)=-(2x2+2x
(2)设2x=t,∵x∈[-2,1],

1
4
≤t≤2.
g(t)=−t2+t=−(t−
1
2
)2+
1
4

∴t=
1
2
,即x=-1时,g(x)有最大值为
1
4
;t=2,即x=1时,g(x)有最小值-2
∴g(x)的值域是[-2,
1
4
].