已知:tanα=根号3(1+m),根号3(tanα*tanβ+m)+tanβ=0,且α,β是锐角,求α+β的值
问题描述:
已知:tanα=根号3(1+m),根号3(tanα*tanβ+m)+tanβ=0,且α,β是锐角,求α+β的值
答
tanα=根号3(1+m),
(√3)m = tanα-√3
√3(tanα*tanβ+m)+tanβ=0
√3tanα*tanβ+tanα-√3+tanβ=0
tanα+tanβ=√3(1-tanα*tanβ)
tan(α+β)=√3
α+β=2kπ+(π/3)