已知cos(α+π/4)=4/5,则tanα=

问题描述:

已知cos(α+π/4)=4/5,则tanα=

以为cos(α+π/4)=4/5,所以sinα(α+π/4)=正负3/5,所以tan(α+π/4)=正负3/4,因为tan(α+π/4)=tanα+tanπ/4/1-tanα*tanπ/4,所以1+tanα=正负3/4*1-tanα,之后解方程就行了,求给分......

cos(α+π/4)=4/5
则sin(α+π/4)=3/5 或 sin(α+π/4)=-3/5
tan(α+π/4)=3/4 或 tan(α+π/4)=-3/4
(tanα+tanπ/4)/(1-tanαtanπ/4)=3/4
(tanα+1)/(1-tanα)=3/4
4tanα+4=3-3tanα
tanα=-1/7

(tanα+tanπ/4)/(1-tanαtanπ/4)=-3/4
(tanα+1)/(1-tanα)=-3/4
4tanα+4=3tanα-3
tanα=-7