1.已知sin2a=3/4,π

问题描述:

1.已知sin2a=3/4,π

  1. sin2a=2sinacosa=(sina+cosa)^2-1=3/4

    π<a<3π/2,sina+cosa<0,sina+cosa=-根号7/2

  2. sin2b-2cos^2 b=(2sinbcosb-2cos^2 b)/(sin^2 b+cos^2 b)=2(tanb-1)/(tan^2 b+1)

    tan(π/4+b)=(1+tanb)/(1-tanb)=3.得到tanb=1/2

    sin2b-2cos^2 b=2(-1/2)/(5/4)=-4/5

  3. 设顶角为A,cosA/2=3/5,sinA/2=4/5,sinA=2sinA/2cosA/2=24/25

    cosA=7/25,tanA=24/7

π