已知二阶非齐次线性微分方程的三个特解为y1=1,y2=x,y3=x^2,写出该方程的通解.
问题描述:
已知二阶非齐次线性微分方程的三个特解为y1=1,y2=x,y3=x^2,写出该方程的通解.
要利用这个结论:若y1、y2是方程p1(x)y''+p2(x)y'+p3(x)y=f(x)的两个特解,则y1-y2是方程的p1(x)y''+p2(x)y'+p3(x)y=0的解.
答
若y1、y2是方程p1(x)y''+p2(x)y'+p3(x)y=f(x)的两个特解,则y1-y2是方程的p1(x)y''+p2(x)y'+p3(x)y=0的特解利用上面的结论,可知y=x-1与y=x²-1都是这个二阶非齐次微分方程所对应的齐次方程的特解因为这两个特解非...