设二次函数f(x)=ax^2+bx(a≠0)满足条件1.f(-1+x)=f(-1-x);2函数f(x)的图像与直线y=x只有一个公共点

问题描述:

设二次函数f(x)=ax^2+bx(a≠0)满足条件1.f(-1+x)=f(-1-x);2函数f(x)的图像与直线y=x只有一个公共点

f(-1+x)=f(-1-x)
则对称轴x=-1
所以-b/(2a)=-1
b=2a
与直线y=x只有一个公共点
则方程ax^2+bx=x有两个相等的解
b=2a
所以ax^2+(2a-1)x=0
x[ax+(2a-1)]=0
x=0,x=-(2a-1)/a
有两个相等的解
-(2a-1)/a=0
a=1/2,b=1
f(x)=x^2/2+x