{an}为等差数列,公差d>0,Sn是数列{an}前n项和,已知a1*a4=27,S4=24.

问题描述:

{an}为等差数列,公差d>0,Sn是数列{an}前n项和,已知a1*a4=27,S4=24.
(1)求数列{an}的通项公式an
(2)令bn=1/(an*a(n+1)),求数列{bn}的前n项和Tn

根据题意S4=4(a1+a4)/2=24所以a1+a4=12联合a1*a4=27解得a1=3,a4=9其中a4=a1+3d=9得d=2所以an=a1+(n-1)d=2n+1bn=1/(2n+1)*(2n+2)=1/(2n+1)-1/(2n+2)所以Tn=1/3-1/4+1/5-1/6+1/7-1/8+……+1/(2n+1)-1/(2...