abc=1,a b c为正数,证明:(a-1+1/b)(b-1+1/c)(c-1+1/a)
问题描述:
abc=1,a b c为正数,证明:(a-1+1/b)(b-1+1/c)(c-1+1/a)
答
(a-1+1/b)(b-1+1/c)(c-1+1/a)=(a-1+ac)(b-1+ab)(c-1+bc)
abc=1,a b c为正数,证明:(a-1+1/b)(b-1+1/c)(c-1+1/a)
(a-1+1/b)(b-1+1/c)(c-1+1/a)=(a-1+ac)(b-1+ab)(c-1+bc)