已知直线x+y-1=0与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交于AB两点,线段AB的中点M在直线L:Y=X/2上
问题描述:
已知直线x+y-1=0与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交于AB两点,线段AB的中点M在直线L:Y=X/2上
若椭圆右焦点关于直线l的对称点在单位圆X^2+Y^2=1上,求椭圆的方程
答
椭圆方程是:x^2/2+y^2/1=1.具体步骤如下:
令A(x1,y1),B(x2,y2),则x1^2/a^2+y1^2/b^2=1 (1) x2^2/a^2+y2^2/b^2=1 (2) x1+y1-1=0 x2+y2-1=0 (3)
(y1+y2)/2=(x1+x2)/4 (4)
(1)-(2)得:...代入(3)(4)得:1/a^2-1/2b^2=0.(5)
椭圆右焦点(根号下a^2-b^2,0)关于直线的对称点为(0,-根号下a^2-b^2),代入单位圆X^2+Y^2=1得:a^2-b^2=1.(6)
(5)(6)联合得:a^2=2,b^2=1