A是n阶可逆矩阵,证明:对任意n维列向量x和y,下述等式成立:x^(t)A^(-1)y=det(A+yx^(t))/det(A) - 1
问题描述:
A是n阶可逆矩阵,证明:对任意n维列向量x和y,下述等式成立:x^(t)A^(-1)y=det(A+yx^(t))/det(A) - 1
答
A是n阶可逆矩阵,证明:对任意n维列向量x和y,下述等式成立:x^(t)A^(-1)y=det(A+yx^(t))/det(A) - 1