设f(x)是定义在R上的函数,且对于任意x,y属于R,恒有f(x+y)=f(x)f (y),且当x大于0时,f(x)>1.证

问题描述:

设f(x)是定义在R上的函数,且对于任意x,y属于R,恒有f(x+y)=f(x)f (y),且当x大于0时,f(x)>1.证
1. 当f(0)=1时,且x<0时,0<f(x)<1
2.f(x)是R上的单调增函数.

1.注意1=f(0)=f(x)f(-x)
当x0,f(-x)>1,所以f(x)=1/f(-x)x,则y-x>0,f(y-x)>1,所以f(y)=f(y-x)f(x)>f(x)