(2010•郑州三模)各项都是正数的等比数列{an}的公比q≠1,且a2,12a3,a1成等差数列,则a3+a4a4+a5的值为(  ) A.5+12 B.5−12 C.1−52 D.5+12或5−12

问题描述:

(2010•郑州三模)各项都是正数的等比数列{an}的公比q≠1,且a2

1
2
a3,a1成等差数列,则
a3+a4
a4+a5
的值为(  )
A.
5
+1
2

B.
5
−1
2

C.
1−
5
2

D.
5
+1
2
5
−1
2

设{an}的公比为q(q>0且q≠1),
由a3=a2+a1,得q2-q-1=0,解得q=

5
+1
2

a3+a4
a4+a5
=
a3+a4
(a3+a4)q
=
1
q
=
5
−1
2

故选B