试说明:对于任意自然数n,n(n+5)-(n-3)(n+2)的值能被6整除.

问题描述:

试说明:对于任意自然数n,n(n+5)-(n-3)(n+2)的值能被6整除.

∵n(n+5)-(n-3)(n+2)=(n2+5n)-(n2-n-6)=n2+5n-n2+n+6=6n+6=6(n+1)
又n≥1
∴总能被6整除.