不定积分∫(arcsin x)^2 dx

问题描述:

不定积分∫(arcsin x)^2 dx

原式=x(arcsinx)²-∫xd(arcsinx)²
=x(arcsinx)²-∫x*2arcsinx*1/√(1-x²)dx
=x(arcsinx)²+∫arcsinx*1/√(1-x²)d(1-x²)
=x(arcsinx)²+2∫arcsinx*d√(1-x²)
=x(arcsinx)²+2arcsinx*√(1-x²)-2∫√(1-x²)darcsinx
=x(arcsinx)²+2arcsinx*√(1-x²)-2∫√(1-x²)*1/√(1-x²)dx
=x(arcsinx)²+2arcsinx*√(1-x²)-2x+C